UPDATED. 2024-05-25 08:30 (토)
KAIST, ‘뉴립스 2022’ 학회 세포 인식 기술 경진대회 우승
KAIST, ‘뉴립스 2022’ 학회 세포 인식 기술 경진대회 우승
  • 김수진 기자
  • 승인 2022.12.28 14:27
  • 댓글 0
이 기사를 공유합니다

초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 기술 개발
정확하게 세포를 인식하고 고해상도 이미지를 빠르게 연산 가능
생명과학 분야 연구의 발전을 돕기 위해 개발된 기술을 전면 오픈소스로 공개
(왼쪽부터) KAIST 김재철AI대학원 윤세영 교수, 이기훈 박사과정, 김상묵 박사과정, 김준기 석사과정(사진=KAIST)
(왼쪽부터) KAIST 김재철AI대학원 윤세영 교수, 이기훈 박사과정, 김상묵 박사과정, 김준기 석사과정(사진=KAIST)

[바이오타임즈] KAIST(총장 이광형)는 김재철AI대학원 윤세영 교수 연구팀이 세계 최고 수준의 인공지능(AI) 학회인 ‘뉴립스(NeurIPS, 신경정보처리시스템학회) 2022’에서 개최된 ‘세포 인식 기술 경진대회’에서 취리히 리서치센터, 베이징대, 칭화대, 미시간대 등 다수의 세계 연구팀을 모두 제치고 1위로 우승을 달성했다고 28일 밝혔다.

국제머신러닝학회(ICML), 표현학습국제학회(ICLR)와 함께 세계적인 권위의 기계학습 및 인공지능 분야 학회로 꼽히는 ‘뉴립스’는 뛰어난 연구자들이 제출하는 논문들도 승인될 확률이 25%에 불과할 정도로 학회의 심사를 통과하기 어려운 것으로 알려져 있다.

윤세영 교수 연구팀은 이번 학회에서 ‘세포 인식 기술 경진대회(Cell Segmentation Challenge)’에 참가했다. 이기훈(박사과정), 김상묵(박사과정), 김준기(석사과정)의 3명의 연구원으로 구성된 OSILAB 팀은 초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 MEDIAR(메디아) 기술을 개발해 2위 팀과 큰 성능 격차로 1위를 달성했다.

세포 인식은 생명 및 의료 분야의 시작이 되는 중요한 기반 기술이지만, 현미경의 측정 기술과 세포의 종류, 염색 방법, 관찰 대상이 되는 세포의 조직, 배율, 세포 주기 등에 따라 다양한 형태로 관찰될 수 있어 인공지능이 학습하기 어려운 분야로 알려져 있다. 세포 인식 기술 경진대회는 이러한 한계를 극복하기 위해 초고해상도의 현미경 이미지에서 제한된 시간 안에 세포를 인식하는 기술을 주제로 개최됐다.
 

(사진=)
MEDIAR 기술 개요. 세포 인식을 위한 인공지능의 학습 단계부터 추론 단계까지 포괄하는 하나의 통합된 기술을 개발했다(사진=KAIST)

연구팀은 기계학습에서 소수의 학습 데이터를 더 효과적으로 활용해 성능을 높이는 데이터 기반(Data-Centric) 접근법과 인공신경망의 구조를 개선하는 모델 기반(Model-Centric) 접근법을 종합적으로 활용해 MEDIAR(메디아) 기술을 개발했다.

개발된 인공지능 기술을 통해 정확하게 세포를 인식하고 고해상도 이미지를 빠르게 연산함으로써 대회에서 좋은 성과를 얻을 수 있었다.

지도교수인 KAIST 김재철AI대학원 윤세영 교수는 “MEDIAR는 세포 인식 기술 경진대회를 통해 개발됐지만, 기상 예측이나 자율주행과 같이 이미지 속 다양한 형태의 개체 인식을 통해 정확한 예측이 필요한 많은 분야에 적용할 수 있다”라고 향후 다양한 활용을 기대했다.

연구팀은 생명과학 분야 연구의 발전을 돕기 위해 개발된 기술을 전면 오픈소스로 공개한다. 학습된 인공지능 모델과 인공지능을 구현하기 위한 프로그램의 소스 코드는 개발자 플랫폼인 깃허브(GitHub)를 통해 이용할 수 있다.

[바이오타임즈=김수진 기자] sjkimcap@biotimes.co.kr



댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.