UPDATED. 2024-07-17 01:20 (수)
KAIST, 약물 부작용 및 용해도 예측 그래프 신경망 기술 개발
KAIST, 약물 부작용 및 용해도 예측 그래프 신경망 기술 개발
  • 김수진 기자
  • 승인 2023.07.18 10:30
  • 댓글 0
이 기사를 공유합니다

AIST 박찬영 교수팀, 한국화학연구원 공동연구팀, 분자 내의 중요한 하부 구조를 탐지해 분자 관계를 예측하는 기법 개발
7월, 8월 인공지능 분야 최고권위 국제학술대회 ‘ICML 2023’, ‘KDD 2023’에서 발표 예정
물질의 상호작용에 의해 발생하는 물리적 성질 예측 문제에서 최신 방법 대비 최대 17% 정확도 향상
화학, 생명과학을 포함한 다양한 분야에서 새로운 물질을 발견하는 데 드는 시간과 비용을 획기적으로 단축할 수 있을 것으로 기대
분자 구조 관계 예측 문제의 예시(사진=)
분자 구조 관계 예측 문제의 예시(사진=KAIST)

[바이오타임즈] 최근 화학, 생명과학 등 다양한 기초과학 분야의 문제를 해결하기 위해 그래프 신경망(Graph Neural Network) 기술이 널리 활용되고 있다. 그 중에서도 특히 두 물질의 상호작용에 의해 발생하는 물리적 성질을 예측하는 것은 다양한 화학, 소재 및 의학 분야에서 각광을 받고 있다.

예를 들어, 어떠한 약물(Drug)이 용매(Solvent)에 얼마나 잘 용해되는지 정확히 예측하고, 동시에 여러 가지 약물을 투여하는 다중약물요법(Polypharmacy)의 부작용을 예측하는 것이 신약 개발 등에 매우 중요하다.

KAIST(총장 이광형)는 산업및시스템공학과 박찬영 교수 연구팀이 한국화학연구원(원장 이영국)과 공동연구를 통해 물질 내의 중요한 하부 구조(Substructure)를 탐지하여 두 물질의 상호작용에 의해 발생하는 물리적 성질 예측의 높은 정확도를 달성할 수 있는 새로운 그래프 신경망 기법을 개발했다고 18일 밝혔다.

기존 연구에서는 두 분자 쌍이 있을 때, 각 분자 내에 존재하는 원자들 사이의 상호 작용만을 고려해 그래프 신경망 모델을 학습하였다. 특정 발색체의 물(H2O)에 대한 용해도를 예측하고자 할 때, 발색체 내의 각 원자들에 대해 물 분자의 원자들 (즉, H, O)이 갖는 영향력을 고려하는 것이다.

연구팀이 이에 반해, 연구팀이 착안한 점은 분자 구조의 화학적 특성을 결정하는 데 있어서 원자뿐만 아니라 작용기(Functional group)와 같은 분자내 하부 구조들이 중요한 역할을 한다는 점이었다.

알코올이나 예를 들어, 알코올이나 포도당과 같이 하이드록실기(Hydroxyl group)를 포함하는 분자들은 일반적으로 물에 대한 용해도가 높은 것으로 알려져 있다. 즉, 하이드록실기라는 작용기가 물에 대한 용해도를 결정하는데 중요한 역할을 한다는 것이다.

연구팀은 분자의 특성을 결정하는데 큰 영향을 끼치는 하부 구조를 추론하는 기술을 분자내의 중요한 정보를 최대한 압축하여 보존하는 ‘정보 병목 이론’과, 분자 내의 어떤 하부 구조가 분자의 고유한 특성을 결정 짓는데 큰 역할을 했는지 대한 인과 관계를 추론하는 ‘인과 추론 모형’을 활용하여 개발했다.

이를 통해 분자의 고유한 특성에 가장 큰 영향을 미치는 하부 구조를 찾아내었다. 또한 분자 간 관계를 추론하는 문제에서는 상대방 분자에 따라 대상 분자의 중요한 하부 구조가 달라질 수 있다는 점을 착안하여 물질 간 관계를 예측하는 모델을 제안했다.

이번 새로운 그래프 신경망 기법을 의학에 적용하여 정보 병목 현상을 기반으로 한 연구는 기존 연구에 비해 약물 용해도 예측에서 11%의 성능 향상, 다중약물요법 부작용 예측에서 4%의 정확도 향상을 이뤄냈다.

또한, 인과 추론 모형을 기반으로 한 연구는 약물 용해도 예측에서 17%의 성능 향상, 약물 부작용 예측에서 2%의 정확도 향상을 이뤄냈다.

박찬영 교수팀은 정보 병목 이론을 기반으로 중요한 하부 구조를 탐지해 분자 구조 관계의 높은 예측 정확도를 달성할 수 있는 그래프 신경망 모델을 개발해 기계학습 분야 최고 권위 국제 학술대회 ‘국제 기계 학습 학회(International Conference on Machine Learning: ICML 2023)’에서 올 7월 발표할 예정이다. 

또한 인과 추론 모형을 기반으로 중요한 하부 구조를 탐지해 분포 변화에도 모델의 성능이 강건하게 유지되는 그래프 신경망 모델을 개발해 데이터마이닝 최고 권위 국제 학술대회 ‘국제 데이터 마이닝 학회(ACM SIGKDD Conference on Knowledge Discovery and Data Mining :KDD 2023)’에서 올 8월에 발표할 예정이다.

두 연구 모두 KAIST 산업및시스템공학과 대학원에 재학 중인 이남경 박사 과정 학생이 제1 저자, 화학연구원의 나경석 연구원이 공동 저자, KAIST 산업및시스템공학과의 박찬영 교수가 교신저자로 참여했다.

두 연구의 제1 저자인 이남경 박사 과정은 “제안한 기술은 분자의 성질을 결정하는 데 있어 큰 영향을 미치는 하부 구조가 존재한다는 화학적 지식에 기반해 그래프 신경망을 학습할 수 있는 새로운 방법”이라면서 “상대편 분자를 고려해 대상 분자의 중요한 구조를 찾는 방법론은 이미지-텍스트 멀티 모달 학습 방법에서도 적용될 수 있어, 심층 학습 전반적인 성능 개선에 기여할 수 있다”고 밝혔다.

연구팀을 지도한 박찬영 교수는 “제안한 기술은 화학과 생명과학을 포함한 다양한 분야에서 새로운 물질을 발견하는데 널리 사용될 것으로 기대하며, 특히 환경 친화적인 소재 개발, 질병 치료를 위한 신약 발굴 등에 있어서 본 기술의 가치가 더욱 부각될 것으로 보인다”라고 밝혔다.

한편 이번 연구는 정보통신기획평가원의 지원을 받은 사람중심 인공지능 핵심원천기술개발 사업과 한국화학연구원 기본사업 (KK2351-10)의 지원을 받아 수행됐다.

 

 

[바이오타임즈=김수진 기자] sjkimcap@biotimes.co.kr


관련기사

댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.